
A Scalable Key Management and Clustering Scheme for Ad Hoc Networks

Jason H. Li, Renato Levy
Intelligent Automation, Inc.

15400 Calhoun Drive, Ste 400
Rockville, MD, 20855, USA

{jli,rlevy}@i-a-i.com

Miao Yu, Bobby Bhattacharjee
Department of Mechanical Engineering

Department of Computer Science
College Park, MD, 20742, USA

mmyu@glue.umd.edu, bobby@cs.umd.edu

Abstract

This paper describes a scalable key management and
clustering scheme for secure group communications in ad
hoc and sensor networks. The scalability problem is solved
by partitioning the communicating devices into subgroups,
with a leader in each subgroup, and further organizing
the subgroups into hierarchies. Each level of the hierar-
chy is called a tier or layer. Key generation, distribution,
and actual data transmissions follow the hierarchy. The
Distributed, Efficient Clustering Approach (DECA) pro-
vides robust clustering to form subgroups, and analytical
and simulation results demonstrate that DECA is energy-
efficient and resilient against node mobility. Comparing
with most other schemes, our approach is extremely scal-
able and efficient, provides more security guarantees, and
is selective, adaptive and robust.

1 Introduction

Multicasting, as an efficient communication mechanism
for delivering information to a large group of recipients, has
led to the development of a range of powerful applications
in both commercial and military domains. Key management
serves as the crucial foundation to enable such secure group
communications. However, the large size of the serving
group, combined with the dynamic nature of group changes,
pose a significant challenge on the scalability and efficiency
on key management research.

Communication between arbitrary endpoints in anad
hoc networktypically requires routing over multiple-hop
wireless paths due to the limited wireless transmission
range. Without a fixed infrastructure, these paths consist
of wireless links whose endpoints are likely to be moving
independently of one another. Given the potentially large
number of mobile devices, scalability becomes a critical
issue. In particular,wireless sensor networks (WSNs)[1]
comprise of a higher number of nodes scattered over some

region. Sensor nodes are typically less mobile, heavily
resource-constrained, irreplaceable, and become unusable
after failure or energy depletion. It is thus crucial to devise
novel energy-efficient solutions for topology organization
and routing that are scalable, efficient and energy conserv-
ing in order to increase the overall network longevity.

In our work, the scalability problem is solved by par-
titioning the communicating devices into subgroups, with
a leader in each subgroup, and further organizing the sub-
groups into hierarchies. Each level of the hierarchy is called
a tier or layer. Key generation, distribution, and actual data
transmissions follow the hierarchy. Communications are
generally restricted within a subgroup at a tier. Further, we
describe an innovative clustering approach to organize de-
vices into subgroups.

Clustering protocols have been investigated for ad hoc
and sensor networks [8][10][16]. While these strategies dif-
fer in the criteria used to organize the clusters, clustering de-
cisions in each of these schemes are based on static views
of the network topology; none of the proposed schemes,
even equipped with some local maintenance schemes, is
satisfactorily resistant to node mobility beyond trivial node
movement. One of the purposes of this work is to propose a
clustering protocol that is resilient against mild to moderate
mobility where each node can potentially move.

In the hybrid energy-efficient distributed clustering ap-
proach (HEED) [17], clusterhead selection is primarily
based on the residual energy of each node. The cluster-
ing process entails a number of rounds of iterations; each
iteration exploiting some probabilistic methods for nodesto
elect to become a clusterhead. While HEED is one of the
most recognized energy-efficient clustering protocols, we
argue that its performance can be further enhanced. In this
work, we will present a distributed, energy-efficient clus-
tering approach (DECA). The protocol terminates without
rounds of iterations as required by HEED, which makes
DECA a less complex and more efficient protocol. In sum-
mary, our approach has the following advantages.

Security. We guarantee that neither a passive nor an ac-
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tive adversary can discover any other subgroup keys that do
not belong to them. Further, our scheme can protect the
equally sensitive information aboutgroup dynamics,while
most current key management schemes are vulnerable to the
group dynamics attacks.

Scalability. The approach addresses the scalability prob-
lem by applying the divide-and-conquer principle to orga-
nize a multicast group into a hierarchy of subgroups and
distribute the functionality of the key management service
among the subgroups. The non-overlapping nature of the
subgroups ensures that the subgroup multicasts occur in
parallel and traverse disjoint parts of the delivery hierarchy,
which makes the scheme extremely scalable.

Efficiency. The approach is efficient in terms of com-
plexity of re-keying operation during a member join or leave
event and key storage requirement. Further, the DECA pro-
tocol renders more robust and energy-efficient clustering.
Such efficiency nicely supports those group members that
only possess equipments with limited capability.

Selective.Unlike current key management schemes, our
approach provides the capacity for selective communication
between group members. Such selectivity will apply natu-
rally in many military and commercial situations.

Robust and adaptive.The approach can handle multi-
ple member changes, such as subgroup partition and merge.
Moreover, our DECA scheme is robust against mild to mod-
erate node mobilities.

The rest of the paper is organized as follows. We present
the multi-tiered key management scheme in Section 2, fol-
lowed by the description of the efficient clustering protocol
in Section 3. We discuss related work in Section 4, and
conclude the paper in Section 5.

2 Multi Tiered Key Management (MTKM)

The basic ideas of multi-tiered key management are
adapted from a previous work by one of the authors [2],
where the cluster size is bounded betweenk and2k − 1 for
some integerk, and better scalability over flat architectures
has been achieved. In this work, we loosen the cluster size
constraints and seek for insights on how we should deploy
the promising ideas of hierarchies and subgroups to actual
military and civilian applications. For completeness, we de-
scribe the core ideas and procedures briefly, followed by se-
curity and performance analysis. We use simple examples
throughout the paper to illustrate concepts and ideas.

2.1 Description of the Technical Approach

2.1.1 Member Hierarchy for Key Distribution

Our key distribution scheme creates a member hierarchy. A
tier or layer comprises of a set of members of the secure
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Figure 1. Initial arrangement of members.

multicast group in the same level of the hierarchy. Layers
are numbered sequentially with the lowest layer of the hier-
archy being layer zero (denoted byL0).

A set of members inL0 can form a subgroup. The size
of each subgroup is restricted by a lower bound and an up-
per bound. Each layer has one lower and upper bound that
should be used across all the subgroups in that layer; dif-
ferent layers can have different set of bounds. There can be
multiple subgroups in each layer. However, the subgroups
need to be disjoint, preferably in the sense of spatial multi-
cast delivery path, at each layer. This will provide the max-
imum extent of parallelism, making the communications of
keying materials and data transmissions extremely scalable.

Within each subgroup, there is a leader that will take
the responsibility of key generation and distribution for that
subgroup. The subgroup leaders of all the subgroups in
layerLi join layerLi+1. As shown in Fig. 1, all ten mem-
bers A-J are part of layerL0, which has been partitioned
into three subgroups: [ABC], [DEFJ], and [GHI]. The sub-
group leaders, C, E and H join layerL1. In layerL1 only
single subgroup [CEH] is formed. The leader, H, of the
layerL1 subgroup joins layerL2 —the highest layer in this
example. The procedure terminates when there is only a sin-
gle member in any layer. Members of each layer of the sub-
group hierarchy consist of subgroup leaders from the im-
mediate lower layer. Similarly, when a subgroup leader is
demoted in a certain layerLj , it needs to be removed from
all the higher layers,Li, i > j that it belongs to.

2.1.2 Layer Keys and Subgroup Keys

A secret layer key is associated with each layer of the hi-
erarchy. A group member possesses a layer key for a spe-
cific layer if and only if it is a member of a subgroup in that
layer. Layer keys are generated, on-demand, by a key server
whenever the layer key needs to be changed (e.g. member
joins or leaves any layer). A secret subgroup key is associ-
ated with each subgroup. Once again, group member pos-
sesses a subgroup key for a specific subgroup if and only if it
is a member of that subgroup. The leader of each subgroup
is responsible for generating the subgroup key for that sub-
group. Finally, in all subgroups, a pair-wise key is shared
between the subgroup-leader and each subgroup member.
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Figure 2. A Variant of Diffie-Hellman Protocol

2.1.3 Authentication and Access Control

Secure multicast typically requires a single entity where ac-
cess to the group is controlled. We call this entity the Au-
thentication and Access Control Server (ACS).

When a new member,A, joins the secure multicast
group, it registers and authenticates itself with the ACS. The
ACS maintains the authentication list for all the members
of the whole group. As part of the registration,A acquires
a time-stamped credentialCredA from the ACS, which is
a digital certificate signed by the ACS. Such a credential
should also contain an expiration time, after whichA will
have to leave the group, or stay via another registration.

Subsequently, whenA joins a subgroup with leaderB,
A andB exchange the credentials to mutually authenticate
each other and establish the pair-wise key between them.
In this work, the members establish the pair-wise key us-
ing a computationally less expensive variant of the Diffie-
Hellman key exchange protocol [11] by leveraging the au-
thentication provided by the ACS, as shown in Fig. 2.

2.1.4 Key Distribution Protocol

We assume that the subgroups have been created in some
appropriate manner. The key distribution protocol ensures
that the layer key is only available to the members joined to
that layer. Similarly, each subgroup has a secret subgroup
key, known to only all the subgroup members.

I. Notation and terminology

• Members and Member Sets

– S: The key server for all layer keys.

– ACS: Authentication and access control server.

– SG(u, j): Subgroup of layerLj , to which mem-
beru belongs.

– LD(u, j): Leader of the subgroup in layerLj to
which memberu belongs.

– LDg(j): Leader of the subgroupg in layerLj.

– UBj : Upper bound of subgroup size in layerLj .
LBj : Lower bound of subgroup size in layerLj .

– u, v: Members of the secure multicast subgroup.

Figure 3. Subgroup Re-keys

• Keys and Messages

– KG(t):The secret key ofG at timet, whereG is
a set of members. IfG is a subgroup, then this is
the subgroup key, ifG is a layer, then this is the
layer key. IfG is a pair of members, then this is
a key shared only by these two members.

– {m}e: Messagem is encrypted by the keye.

– 〈Unicast :: u → v : x〉: u sends a unicast mes-
sagex to v.

– 〈Multicast :: u → G : x〉: u multicasts mes-
sagex to a set of membersG, whereG is either
a subgroup or a layer.

II. Distributed re-keying operations

• Subgroup re-keys. For a subgroupg in layer j, the
leaderLDg(j) obtains a new subgroup keyKg(t + 1)
and unicasts it to each member of the subgroup en-
crypted separately by the pair-wise key of the leader
with each member, as shown in Fig. 3. LetKp(v) rep-
resents the pair-wise key between a subgroup member
v and its leaderLDg(j), and the operation is:

∀v ∈ g, 〈Unicast :: LDg(j) → v : {Kg(t+1)}Kp(v)〉.
(1)

• Layer re-keys.The key serverS generates a new layer
key for layerLj, and multicasts it to all members of
layer Lj+1. These are the subgroup-leaders of layer
Lj. Each subgroup leader of layerLj then performs a
subgroup multicast to all the members of its subgroup
in layerLj, as shown in Fig. 4.

〈Multicast :: S → Lj+1 : {KLj
(t + 1)}KLj+1

(t)〉

(2)

∀v ∈ Lj+1, 〈Multicast :: v → SG(v, j) :

{KLj
(t + 1)}KSG(v,j)(t+1)〉. (3)

Note thatKSG(v,j)(t+1) is the most updated subgroup
key for the subgroup containingv.

3
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Figure 4. Layer Re-keys

III. Re-keying algorithm for member joins and leaves

When a new member joins the secure multicast group, it
is inducted into someL0 subgroup. When a member leaves
the group, it leaves from all the layers it was joined to. Upon
a membership change, the re-keying algorithm does the fol-
lowing: for each affected subgroup, doSubgroup re-keys,
and then for each affected layer, doLayer re-keys.

2.1.5 Data Transmissions

Top-down data transmission Suppose the top leader re-
siding at layerLj wants to transmit data to the whole group.
First, the data gets encrypted using the subgroup key of
which it belongs at the immediate lower layer, i.e.Lj−1,
and then it is multicast to the subgroup. Second, each mem-
ber of the subgroup in layerLj−1 receives the data, which
will in turn re-multicast the data to the lower layer sub-
groups using corresponding subgroup keys. This process
continues until everyone receives the data.

In addition, the top layer leader canselectivelycommu-
nicate with members at any layer. Such messages can also
reach all the layers below, without sending messages to ev-
ery member in the whole group. For example, as shown in
Fig. 5, H can selectively send data only to E and subgroup
[DEJF]. Such a scenario naturally matches many military
and commercial communication cases.

Peer-to-peer data transmissionIt is easy to observe that
our scheme also supports peer-to-peer communications in
the same subgroup. A member in some subgroup simply
encrypt the data using the shared subgroup key. Only the
members in the same subgroup can correctly receive the
data. In this case, the sending party needs not to be the
leader. Consequently, peer-to-peer data transmissions will
be limited within the subgroup; no re-multicast will happen.

2.2 Security Analysis

General Security Analysis Let A be apassive adversary,
who is never a subgroup member. We assumeA eavesdrops
on all traffic in an arbitrary subgroup and receives all the
encrypted key information and data packets. A brute-force
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Figure 5. Selective transmission

attack to find the group key takesO(2k) operations wherek
is the length of the key–A cannot do better than this. In ad-
dition,A cannot construct the pair-wise key,K, by monitor-
ing the network traffic and acquiring the transmitted values
gα andgβ without knowing the values ofα andβ.

Let B be anactive adversary,who has been a member
of some subgroup during some previous time period. In
our protocol, whenB joins a subgroup, it cannot derive any
previous group key by doing better than exhaustive search,
i.e. O(2k) operations. Now assumeB leaves the group
and tries to read the subgroup traffic after it has left.B has
with it the old pair-wise key with the subgroup leader, and
possibly a set of layer keys. However, it cannot read the
subgroup traffic at a later time, since the scheme updates all
the keys thatB previously knows per our re-key operations.

Group Dynamics Security We collectively refer togroup
dynamics information (GDI)[13] as information describing
the dynamic membership of a multicast group, such as the
number of users as a function of time, and the number of
users who join or leave the service during a time interval. In
many group communications, group dynamics information
is confidential and should not be disclosed.

In most tree-based key distribution scheme [12][14][15],
group members can distinguish the key updating process
due to user join and that due to user departure, and rekey
message size is closely related with the group size. As a
result, attackers can estimate the number of joins and leaves
by examining the rekey processes, and estimate the number
of members from the rekey message size.

In our scheme, however, the GDI can be protected. Since
the subgroup leaders establish keys for the subgroup mem-
bers through pair-wise key exchange, the subgroup mem-
bers cannot even obtain GDI of its own subgroup, let alone
other subgroups at other hierarchy. Our scheme is essen-
tially immune to the GDI attacks because, even with bulk
rekeys, the rekeying messages (or their sizes) do not con-
tain any distinguishing information that would divulge GDI
to a corrupt insider. Note that the subgroup leaders natu-
rally obtain the dynamic membership information of their
subgroup and all subgroups below its layer. However, it can
be shown that the probability of an attacker being promoted
high in the layer hierarchy is exponentially small.
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2.3 Performance Analysis

We generalize the analysis of the previous work [2] to
various cluster sizes and summarize our results here without
detailed analysis.

Small Cluster SizesThe minimum cluster size that can be
used (while still preserving the re-keying guarantees) is two.
For very small cluster sizes, the intra-cluster overhead de-
creases, but the number of layers increases. The increased
number of layers results in higher processing at the key
server, and may lead to higher overhead in terms of clus-
ter reconfiguration. In the worst case, the minimum cluster
size is two, and clusters split as soon as they have more than
three members, i.e. the maximum cluster size is three.

Theorem 2.1 For groups with small cluster sizes:
• The number of layers is exactly⌈log2 N⌉.

• The amortized communication cost of a member join-
ing/leaving the group is bounded by2c+4+O( log2n

n
).

• The average number of keys stored by a member is4.

• The amortized cost of symmetric key processing due to
a member join/leave is≤ 2. The average asymmetric
key processing cost is less than1.

Large Cluster Sizes When the minimum cluster size is
relatively large (say≥ 10), the number of layers is cor-
respondingly small. Since the large minimum cluster size
forces a larger maximum cluster size (e.g. at least 20), there
is relatively low inter-cluster overhead from individual joins
and leaves. Further, with higher probability, the changes are
restricted to a small number of layers. However, the intra-
cluster cost is high, since each change to a cluster requires
all cluster members to be rekeyed. Let the minimum cluster
size bek, and that the largest cluster be of sizeC, we have:

Theorem 2.2 For large groups:
• The number of layers is at most⌈log2 N⌉.

• The amortized communication cost of a member join-
ing/leaving the group is bounded byO(C)∗O(klogkn

n
).

• The average number of keys stored by a member is
2 + C

k−1 .

• The amortized cost of symmetric key processing due
to a member join/leave isless than 2. The average
asymmetric key processing cost isless than 1.

The cluster reconfiguration cost depends entirely on the
dynamic sequence of joins and leaves to the multicast
group. Without a closed form description of the join/leave
dynamics, it is impossible to analytically quantify the effect
of the join/leave dynamics on the protocol overhead. Thus
we seek to simulations to analyze such scenarios.
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2.4 Simulation Results

2.4.1 Simple Cluster Dynamics

We first experiment with simplistic dynamic join and leave
sequences to get a basic understanding of how the protocol
behaves when increasing the maximum cluster size. Here,
256 nodes join the group initially, and then we simulate join
(and leave) events, with each event chosen uniformly at ran-
dom. During each event, between 1-4 nodes either join or
leave. The clustering is recomputed after each event, and
we repeated the experiment for different maximum clus-
ter sizes. We use 4 as the minimum cluster size in all ex-
periments, unless otherwise noted. In Fig. 6, we plot the
number of merges and splits for maximum cluster size 8,
over 1000 events. With the cluster bounds set to 4 and 8,
there is a steady set of cluster merges and splits as nodes
join and leave. Note further that the number of merges and
splits closely track each other. In Fig. 7, we plot the results
from the same experiment when the maximum cluster size
is increased to 24. We observe that the number of cluster
merges and splits have reduced by more than two orders of
magnitude (this run required 16K events to produce around
50 splits and merges whereas with the cluster size set to 8,
1000 events produced over 500 splits and merges!).

2.4.2 Batch Updates

We consider a somewhat more representative scenario in
this section. In each experiment, the system has a “batch
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size” B. As before, we consider a sequence of join and
depart events. Each event is either a join or a leave (uni-
formly at random), and the joins and leaves are arbitrarily
interleaved. AfterB events, the hierarchy is recomputed.

Table 1. Batch updates.
Batch Min. Max. Num. Merge Num. Split
Size Cl. Size Cl. Size Merges Total Splits Total

1 4 8 2396 19130 2480 20925
10 4 8 2218 17684 2292 19466
100 4 8 1310 10044 1356 11738
1000 4 8 282 2050 386 3513

1 4 12 188 1852 246 3012
10 4 12 219 2189 276 3387
100 4 12 165 1693 233 2913
1000 4 12 66 658 118 1538

1 4 16 55 636 94 1543
10 4 16 59 717 93 1530
100 4 16 38 457 89 1481
1000 4 16 9 104 54 920

1 4 32 0 0 22 704
10 4 32 0 0 20 640
100 4 32 0 0 19 612
1000 4 32 0 0 17 544

1 8 16 752 12857 780 13533
10 8 16 793 13527 820 14234
100 8 16 446 7470 475 8283
1000 8 16 94 1456 120 2108

1 8 24 38 819 60 1482
10 8 24 50 1072 70 1722
100 8 24 23 500 40 993
1000 8 24 9 187 27 678

1 8 32 7 190 23 737
10 8 32 3 74 25 803
100 8 32 3 86 19 611
1000 8 32 1 23 18 576

1 32 64 78 5505 86 6028
10 32 64 29 2111 37 2633
100 32 64 23 1663 30 2124
1000 32 64 5 330 12 801

1 32 96 1 72 5 480
10 32 96 1 73 5 480
100 32 96 2 140 5 480
1000 32 96 2 148 5 480

1 32 128 0 0 4 512
10 32 128 0 0 4 512
100 32 128 0 0 4 512
1000 32 128 0 0 4 512

In Table 1, we present the results from our batch experi-
ments. Here, 512 nodes initially join the system (and form
the hierarchy), and then 10,000 join (or leave) events are
simulated. The batch size is shown in the first column, and
the rest of the columns are similar to the previous results.
The results motivate the following observations:

• Batch updates clearly reduce the protocol overhead.
When the maximum cluster size is relatively small
(twice the minimum cluster size), then batching 100
updates can often reduce overhead by 50% or more.

• Batch updates are most useful when the maximum
cluster size is small. Larger maximum sized clusters

insulate the effects of batch updates since each cluster
can “absorb” more joins.

• As the minimum cluster size is increased (and the max-
imum cluster size is not very close to the twice the
minimum cluster sizes), the effect of both batching and
increasing cluster sizes is minimal.

Thus, to minimizedynamicoverhead, the minimum clus-
ter size is a more important parameter, and has more effect
than maximum cluster size and batching updates. If the
minimum cluster size cannot be increased, then the max-
imum cluster size should be at least thrice the minimum
cluster size, or updates should be batched.

3 Distributed Efficient Clustering Approach

3.1 Problem Statement

An ad hoc wireless network is modeled as a setV of
nodes that are interconnected by a setE of full-duplex di-
rected communication links. Each node has a unique iden-
tifier and has at least one transmitter and one receiver. Two
nodes are neighbors and have a link between them if they
are in the transmission range of each other [5]. Nodes
within the ad hoc network may move at any time without
notice, it is our goal that the clustering protocol can still
generate decent clusters under such mobility.

Let the clustering durationTC be the time interval taken
by the clustering protocol to cluster the network. Let the
network operation intervalTO be the time needed to exe-
cute the intended tasks. In many applications,TO >> TC.
In general, nodes that travel rapidly in the network may de-
grade the cluster quality because they alter the node dis-
tribution in their clusters and make the clusters unstable,
possibly long before the end ofTO. However, research
efforts on clustering should not be restricted only within
the arena of static or quasi-stationary networks where node
movements are rare and slow. Rather, for those applications
whereTO is not much longer thanTC, we propose an ef-
ficient protocol that generates clusters inad hoc networks
with mild to moderate node mobility. One such example is
related to fast and efficient command and control in mili-
tary applications, where nodes can frequently move. In our
model forsensor networks, though, the sensor nodes are as-
sumed to be quasi-stationary. Nodes are location unaware
and will be left unattended after deployment. Recharging is
assumed not possible and therefore, energy-efficient sensor
network protocols are required for energy conservation and
prolonging network lifetime.

For an ad hoc or sensor network with nodes setV , the
goal of clustering is to identify a set of clusterheads that
cover the whole network. Each and every nodev in setV
must be mapped into exactly one cluster, and each ordinary
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node in the cluster must be able to directly communicate to
its clusterhead. The clustering protocol must be completely
distributed meaning that each node independently makes its
decisions based only on local information. Further, the clus-
tering must terminate fast and execute efficiently in terms of
processing complexity and message exchange. Finally, the
clustering algorithm must be resistant to moderate mobility
(in ad hoc networks) and at the same time renders energy-
efficiency, especially for sensor networks.

3.2 DECA Clustering Algorithm

In DECA, each node periodically transmits a Hello mes-
sage to identify itself, and based on such Hello messages,
each node maintains a neighbor list. Define the score func-
tion at each node asscore = w1E + w2C + w3I, where
E stands for node residual energy,C stands for node con-
nectivity, I stands for node identifier, and weights follow∑3

i=1 wi = 1. We put higher weight on node residual en-
ergy in our simulations. The computed score is then used
to compute the delay for this node to announce itself as
the clusterhead. The higher the score, the sooner the node
will transmit. The computed delay is normalized between0
and a certain upper boundDmax, which is a key parameter
that needs to be carefully selected in practice, like the DIFS
parameter in IEEE 802.11. In our simulation, we choose
Dmax = 10ms and the protocol works well. After the clus-
tering starts, the procedure will terminate after timeTstop,
which is another key parameter whose selection needs to
take node computation capability and mobility into consid-
eration. In the simulation, we chooseTstop = 1s.

The distributed clustering algorithm at each node is illus-
trated in the pseudo code fragments. Essentially, clustering
is done periodically and at each clustering epoch, each node
either immediately announces itself as a potential cluster-
head or it holds for some delay time.

On receiving such clustering messages, a node needs to
check whether the node ID and cluster ID embedded in the
received message are the same; same node ID and cluster ID
means that the message has been transmitted from a cluster-
head. Further, if the receiving node does not belong to any
cluster, and the received score is better than its own score,
the node can simply join the advertised cluster and cancel
its delayed announcement.

I. START-CLUSTERING-ALGORITHM()

1 myScore = w1E + w2C + w3I;
2 delay = (1000 − myScore)/100;
3 if (delay < 0)
4 then broadcastCluster(myId, myCid, myScore);
5 else
6 delayAnnouncement ();
7 Schedule clustering termination.

II. RECEIVING-CLUSTERING-MESSAGE(id, cid, score)

1 if (id == cid)
2 then if (myCid == UNKNOWN)
3 then if (score > myScore)
4 myCid = cid;
5 cancelDelayAnnouncement ();
6 broadcastCluster (myId, myCid,score);
7 elseif(score > myScore)
8 then if (myId == myCid)
9 then needConversion = true;

10 else
11 convertToNewCluster ();

III. F INALIZE -CLUSTERING-ALGORITHM()

1 if (needConversion)
2 then if (!amIHeadforAnyOtherNode ())
3 then convertToNewCluster ();
4 if (myCid == UNKNOWN)
5 then myCid = cid;
6 broadcastCluster (myId, myCid, score);

If the receiving node currently belongs to some other
cluster, and the received score is better than its own score,
two cases are considered. First, if the current node belongs
to a cluster with itself as the head, receiving a better scored
message means that this node may need to switch to the bet-
ter cluster. However, cautions need to be taken here before
switching since the current node, as a clusterhead, may al-
ready have other nodes affiliated with it. Therefore, incon-
sistencies can occur if it rushes to switch to another cluster.
In our approach, we simply mark the necessity for switch-
ing (line 9 in Phase II) and defer it to finalizing phase, where
it checks to make sure that no other nodes are affiliated with
this node in the cluster as the head, before the switching
can occur. But if the current node receiving a better-scored
message is not itself a clusterhead, as an ordinary node, it
can immediately convert to the new cluster, and this is the
second case (line 11 in Phase II). It is critical to note that
the switch process mandates that a node needs to leave a
cluster first before joining a new cluster. In the finalizing
phase, where each node is forced to enter afterTstop, each
node checks to see if it needs to convert. Further, each node
checks if it already belongs to a cluster and will initiate a
new cluster with itself as the head if not so.

3.3 Correctness and Complexity

The protocol described above is completely distributed,
and we have proven the following results1.

• Eventually DECA terminates.

• At the end of Phase III, every node can determine its
cluster and only one cluster.

1For a thorough description, please refer to our previous work [9].
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• When clustering finishes, any two nodes in a cluster
are at most two-hops away.

• Each node transmits only one message in operation.

• The time complexity of the algorithm isO(|V |).

3.4 Performance Evaluation

We evaluate DECA using an in-house simulation tool
called agent-based network simulator,NetSim. In our sim-
ulations, random graphs are generated so that nodes are
randomly dispersed in a1000m× 1000m region and each
node’s transmission range is bound to 250m. We investi-
gate the clustering performance under different node mo-
bility patterns, and the node speed ranges from 0 to 50m/s.
For each speed, each node takes the same maximum speed
and a large number of random graphs get generated. Simu-
lations results are averaged over these random graphs.

In general, it is undesirable to create single-node clus-
ters. Single-node clusters arise when a node is forced to rep-
resent itself . While many other protocols generate lots of
single-node clusters as node mobility gets more aggressive,
our algorithm shows much better resilience. We have con-
sidered the following metrics for performance comparisons:
1) the average overhead (in number of protocol messages);
2) the ratio of the number of clusters to the number of nodes
in the network; 3) the ratio of the single-node clusters to the
number of nodes in the network; and 4) the average residual
energy of the selected clusterheads.

We first look at static scenarios where nodes do not
move and the quasi-stationary scenarios where the maxi-
mum node speed is bounded at 0.1m/s. We choose [10]
proposed by Lin (LIN) as a representative for those general
clustering protocols, and choose Krishna’s algorithm (KR-
ISHNA) [8] to represent dominating-set based clustering
protocols. For energy-aware protocols, we choose HEED
[17] to compare with DECA.

Fig. 8 shows that KRISHNA has the worst clustering
performance with the highest cluster-to-nodes ratio, while
DECA and LIN possess the best performance. HEED per-
forms in between. In addition, all four protocols perform
consistently under (very) mild node mobility.

As we increase the maximum node speed, both LIN and
KRISHNA fail to generate clusters. This is expected. In
LIN, a node will not transmit its message until all its better-
scored neighbors have done so; the algorithm will not ter-
minate if a node do not receive a message from each of
its neighbors. Node mobility can make the holding node
wait for ever. In KRISHNA, in order to compute clus-
ters, each node needs accurate information of the entire net-
work topology, facilitated by network-wide link state up-
date which by itself is extremely vulnerable to node mo-
bility. In contrast, we found that both HEED and DECA
are quite resilient to node mobility in that they can generate
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Figure 9. Average number of transmissions.

decent clusters even when each node can potentially move
independently of others. The following figures compare the
performance of DECA and HEED under node mobility.

Fig. 9 shows that for DECA, the number of protocol
messages for clustering remains one per node, regardless of
node speed. For HEED, the number of protocol messages
is roughly 1.8 for every node speed, and a node running
DECA transmits about56% number of messages as that in
HEED. The fact that HEED incurs more message transmis-
sions is due to the possibly many rounds of iterations (es-
pecially when node power is getting reduced), where each
node in every iteration can potentially send a message to
claim itself as the candidate clusterhead. Reducing the num-
ber of transmissions is of great importance, especially in
sensor networks, since it would render better energy effi-
ciency and fewer packet collisions (e.g. CSMA/CA type
MAC in IEEE 802.11).

Further, we compare DECA and HEED with respect
to the (normalized) average clusterhead energy in Fig. 10.
Again both DECA and HEED perform quite consistently
and DECA outperforms HEED with abouttwice the av-
erage clusterhead residual energy. This is in accordance
with Fig. 9 where DECA consistently incurs fewer mes-
sage transmissions than HEED. In sensor networks, sending
fewer messages by each node in DECA while achieving the
intended goal usually means energy-efficiency and longer
node lifetime, since transmissions typically consumes or-
ders of magnitude more energy than processing.
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Fig. 11 and Fig. 12 illustrate the ratio of number of clus-
ters and single node clusters to the total number of nodes
in network. In both cases, DECA outperforms HEED. Note
that both DECA and HEED perform quiteconsistentlyun-
der different maximum node speed and this is not coinci-
dent: a node in both DECA and HEED will stop trying to
claiming itself as the potential clusterhead after some initial
period (delayed announcement in DECA and rounds of iter-
ations in HEED) and enters the finalizing phase. As a result,
the local information gathered, which serves as the base for
clustering, is essentially what can be gathered within the
somewhat invariant initial period which leads to consistent
behaviors under different node mobility.

It can be observed that in DECA the dispersed delay
timers for clusterhead announcement assume the existence
of a global synchronization system. However, we can show
that, our DECA scheme is in fact quite resilient against
synchronization drifts. It has been shown in the literature
[6] that synchronization errors can be controlled within the
range of10µs (with minimum efforts) for nodes in sensor
networks, which have largely the most stringent computing
and communicating resources. We further relax this time
range and put upto2ms of errors on the delay timers. Fig.
13 illustrates the simulation results. We can easily observe
that with1ms and2ms synchronization error, the protocol
performance tracks the case of perfect synchronization in
an indistinguishable manner.
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4 Relevant Work

A family of well-known protocols has been proposed for
key management based on logical trees. One representative
scheme is the Logical Key Hierarchies (LKH) scheme [15].
Essentially, the leaf nodes on the tree represent the different
members, while the intermediate nodes are only logical and
represent the different keys. Each member possesses all the
keys on its path to the root, which serves as the group key.
While LKH gains wide popularity, the fundamental princi-
ples of LKH predetermines that it will not fit well in large
networking environment, if applied as a whole framework.
First, there is no hierarchical structure in terms of group
member organization: the hierarchy is only for key distri-
bution purpose, and all the group members in LKH are of
the same leaf level. Second, any member can send messages
to the whole group or any selected members. This can incur
serious security risks, especially in military environment.

In [16] the authors proposed an efficient localized al-
gorithms that can quickly build a backbone directly in ad
hoc networks. This approach uses a localized algorithm
called themarking processwhere hosts interact with oth-
ers in restricted vicinity. This algorithm is simple, which
greatly eases its implementation, with low communication
and computation cost; but it tends to create small clusters.

Similar to [10], Basagni [3] proposed to use nodes’
weights instead of lowest ID or node degrees in clusterhead
decisions. Weight is defined by mobility related parameters,
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such as speed. Basagni [4] further generalized the scheme
by allowing each clusterhead to have at most k neighboring
clusterhead and described an algorithm for finding a maxi-
mal weighted independent set in wireless networks.

In Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol [7], a node elects to become a
clusterhead randomly according to a target number of
clusterheads in the network and its own residual energy,
and energy load gets evenly distributed among the sensors
in the network. In addition, when possible, data are
compressed at the clusterhead to reduce the number of
transmissions.

5 Conclusions

While many key management schemes suffer from scal-
ability problem, our multi-tiered key management scheme
was designed to utilize the parallelism inherent in the mul-
ticast topology. Therefore, we expect our algorithms to
perform extremely efficiently in practice. In addition, our
scheme provides added security in that the group dynamics
can also be protected. Furthermore, our scheme provides
the capacity for selective group communication.

Our distributed clustering algorithm works with re-
silience to node mobility and at the same time renders en-
ergy efficiency. The algorithm terminates fast, has low time
complexity and generates non-overlapping clusters with
good clustering performance. Our approach is applicable to
both mobile ad hoc networks and energy-constrained sen-
sor networks. Combined together, our scheme is powerful
and general, and it can naturally fit into the hybrid mili-
tary/commercial communication infrastructure.
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